Contact Lens Materials

created by: L. Sorbara, OD, MSc, FAAO, Dipl C&CL
and
L. Jones PhD, FCOptom, FAAO, Dipl C&CL
presented by: M. Steenbakkers, OD, FAAO
The Ideal Lens Material

- meets cornea’s oxygen requirements
- physiologically inert
- excellent in vivo wetting
- resists deposition
- dimensionally stable
- durable
- optically transparent
- requires minimal patient care
- easily machineable
Materials Types

- **Rigid**
 - PMMA (late 1930’s)
 - RGP (late 1970’s)

- **Hydrogel**
 - Low water content (WC - late 1960’s)
 - High water content (HWC - late 1970’s)
 - Silicone hydrogel (late 1990’s)
Material Categories

- **Natural**
 - Collagen

- **Modified natural**
 - CAB (butyrate of cellulose acetate)

- **Synthetic**
 - PMMA (polymethylmethacrylate)
 - HEMA (poly-2-hydroxyethyl methacrylate)
Fundamentals

- All materials formed from repeating short units (monomers) joined to form long chains (polymers)
Fundamentals

- **Single monomers joined (homopolymer)**
 - poly (methyl methacrylate) - PMMA
 - poly (2-hydroxyethyl methacrylate) - polyHEMA

- **Two or more monomers joined**
 - copolymers
Simplest Synthetic CL Polymers

PMMA (rigid) + hydroxyl groups (OH) to increase hydrophilicity = HEMA (soft)
Crosslinking

- polymer chains connected to each other by side chains
- affect the tensile strength
- affect the oxygen permeability
- greater cross links, less water, smaller pore size
Polymer Physical Characteristics

- Hardness → Shore D
- Index of refraction → refractometer
- O₂ Permeability → Fatt method
- Impact Resistance → ASTM D256-78 Impact test
- Light Transmittance → Hoffman
RGP Physiochemical Properties

- light transmission
- refractive index
- specific gravity
- oxygen permeability
- hydration
- adsorption/absorption
- wettability
- tensile strength
- scratch resistance (Shore hardness)
Important Material Properties

- rigidity
- durability
- deposit resistance
Hydrogel Physiochemical Properties

- hydration
- refractive index
- light transmission
- linear expansion (swelling factor)
- oxygen permeability/transmissibility
- pervaporation tendencies (SCL’s)
- absorption/adsorption
- stability in aqueous environments
- tensile strength
Hydrogel Physiochemical Properties

- **tensile strength**
 - “how strong is it?”

- **modulus of elasticity**
 - “how flexible is it?”

- **coefficient of elongation**
 - “how far can it be stretched?”

- **tear strength**
 - “how does it resist tearing?”
Hydrogel Physiochemical Properties

- Biocompatibility
- Cytotoxicity
- Ocular irritation 21-day rabbit test
- Resistance to microbial growth
- Absorption of Preservative/Disinfectants
- Stability in Solutions
- Protein Deposition
Oxygen Transport
Oxygen Transport

- **Material Permeability (P)**
 - D (diffusion component) $\times k$ (Oxygen permeability)
 - Value $\times 10^{-11}$

- **Oxygen Transmissibility**
 - Dk/t (lens thickness)
 - Value $\times 10^{-9}$
Corneal Oxygenation (SCL)

- Transmissibility related to Dk and t
 - EWC
 - BVP & design

- Reduced thickness increases oxygenation linearly

- Increased equilibrium water content (EWC) increases oxygenation logarithmically

- Minimum thickness related to EWC
 - handling
 - dehydration

Oxygen Permeability related to amount of H₂O that O₂ can diffuse through

Holden et al; CEO 1986
McNally et al; CEO 1987
Orsborn & Zantos; CLAO J1988
Rigid (thermoplastics)

- PMMA (polymethyl methacrylate)
- GP

1. CAB (cellulose acetate butyrate)
2. Silicone-acrylate copolymers
3. Fluorinated polymers

Oxygen permeability related to cross-linking of the material and ability to bond with \(O_2 \) physically within the materials
Poly (methyl methacrylate) [PMMA]

- patented as perspex in 1934
- used in contact lenses late ‘30s
- readily machined and polished
- low cost
- fairly wettable when clean
- easy to care for
- zero O_2 permeability
- used up to 1970’s
RGP lens materials

- Early attempts to replace PMMA:
 - cellulose acetate butyrate (CAB)
 - siloxane acrylates (SA)
Cellulose Acetate Butyrate (CAB)

- introduced by Eastman, mid 1930s
 - derived from polysaccharide (cellulose)
- more flexible than PMMA
- can be moulded or lathed
- hydroxyl groups result in 2% H_2O content
 - material stability lower than PMMA
- Dk range 4-8
- incompatible with BZK chloride
Siloxane Methacrylates
(Silicone Acrylates)

- MMA backbone
- Si-O-Si bond
- Dks 12-60 (low - medium)
- wetting agent added
- surface negatively charged
Silicone Acrylates

- Advantages
 - *higher Dk than any previous materials*
 - *reduced rigidity*
 - *allowed larger lens diameters*

- Disadvantages
 - *more deposit prone*
 - *surface easily scratched*
 - *higher breakage rate*
 - *can craze*
 - *flexure problems*
 - *parameter instability*
Silicone Acrylates

Dk values

- Boston II 12
- Boston IV 19
- Optacryl 60 18
- Paraperm O₂ 16
- Paraperm EW 56
- Silperm 100 100
Fluorosilicone Methacrylates
Fluorosilicone Acrylates (FSA)

- *same basic structure as silicone acrylate copolymer*
- *has fluorinated side chains added*
- *early attempts to surpass siloxane acrylates include:*
 - Alberta N; Equalens; FluoroPerm
- *lower surface charge*
- *better wetting (?)*
- *reduced deposits (?)*
Fluorosilicone Acrylates

- DKs 40 to 100+ (med - high)
- EW potential
- surface easily scratched & greater lens flexure compared with PMMA
- next generation
 - Fluorex; FluoroPerm
 - Equalens II; Alberta N-FL
- NB Boston RXD
 - Dk 45, tough material, approaching PMMA
Modern “Boston” family of RGP materials

- Patented AerCor technology
 - fluorosiloxane methacrylates
 - use low silicone content
 - typically SA 10-20%; AerCor design 5-7%
- Boston EO (extra oxygen) - Dk 82
- Boston ES (extra stiffness) - Dk 31
- Boston 7 - Dk 73
- Boston XO - Dk 100
Menicon Materials

- Menicon Z
 - Fluorosilicone acrylate with silylstyrene
 - Dk 163; Dk/t 125
 - Approved for up to 30 nights wear

- Menicon Super Ex (SF-P)
 - Dk 145; Dk/t 81
Silicone Rubber (Elastomers)

- High molecular weight cross-linked poly (dimethyl diphenyl vinyl siloxanes)
 - eg Silsoft
- polymerized at high temp and pressure
- moulded lens
- high permeability (Dk=250)
- very hydrophobic
 - poor wettability
 - lipophilic
- surface plasma irradiated or chemically coated to wet
Soft (Hydrophilic) Materials
Hydrogels (Thermosetting Plastics)

- copolymer of hydrophilic and hydrophobic monomers
- xerogel - rigid
- hydrophilic
 - interacts with water
- hydrophobic
 - backbone
 - mechanical strength
- cross-linking agents for increasing strength and stability
Soft Contact Lens Polymers

- **PolyHEMA**
 - hydroxyethyl methacrylate
 - original material
 - polyHEMA crossed linked by EGDMA
 - ethylene glycol dimethacrylate
 - close relative of PMMA
 - 38% water content

- **Wichterle**
 - molded PHEMA lenses (1956)
 - developed spin-casting (1961)
 - developed lathing of the xerogel (1963)
Advantages of HEMA

- Cheap
- Easily machinable
- Long life
- Dimensionally stable
 - pH
 - Tonicity
 - Temperature
Disadvantages of HEMA

- Reduced thickness
 - poor handling

- Low Dk
 - increased edema
 - increased vascularisation
 - “CL Exhaustion Syndrome”
Examples of Typical Dk/t

<table>
<thead>
<tr>
<th>Hydrogels</th>
<th>Dk/t</th>
<th>RGP’s</th>
<th>Dk/t</th>
</tr>
</thead>
<tbody>
<tr>
<td>LWC (38%)</td>
<td>15</td>
<td>SA</td>
<td>27</td>
</tr>
<tr>
<td>MWC (55%)</td>
<td>27</td>
<td>FSA</td>
<td>60</td>
</tr>
<tr>
<td>HWC (70%)</td>
<td>22</td>
<td>F</td>
<td>130</td>
</tr>
</tbody>
</table>

Measured at -3.00D

Min required Dk/t – Daily Wear 24; Extended Wear 87
How to Increase WC?

- Take base material
 - MMA
 - HEMA

- Copolymerise with monomer with increased hydrophilicity
Principal Backbone:

HEMA - hydroxyethyl methacrylate
MMA - methyl methacrylate

Neutral (non-ionic)

- N-vinyl pyrrolidone
- Polyvinyl alcohol
- Phosphoryl-choline
- Glyceryl methacrylate

Negatively charged (ionic)

- Methacrylic acid
- Carboxylic acid
- Acrylic acid
Advantages of HWC

- **Increased Dk**
 - longer WT
 - improved physiology

- **Increased thickness**
 - improved handling
Disadvantages of HWC

- **Reduced**
 - life-span
 - reproducibility

- **Increased**
 - dehydration
 - discolouration
 - cost
 - deposition
FDA lens materials categories

Soft (hydrophilic) material groups ("-filcon")

<table>
<thead>
<tr>
<th>Group</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Low water content (~50%), non-ionic (having an ionic content of 1% mole fraction at pH = 7.2)</td>
</tr>
<tr>
<td>2</td>
<td>High water content (↑50%), non-ionic</td>
</tr>
<tr>
<td>3</td>
<td>Low water content (~50%), ionic (having an ionic content of ↓1% mole fraction at pH = 7.2)</td>
</tr>
<tr>
<td>4</td>
<td>High water content (↑50%), ionic</td>
</tr>
</tbody>
</table>
Soft Contact Lens Polymers

- Ionic Materials
 - net negative charge on surface

- Non-ionic materials
 - still have charged sites within polymer matrix
 - no net surface charge
Ionic versus Non-Ionic

- Lenses containing MA (ionic)
 - more free water molecules
 - wetting agents attract more water and thus can release more water

- Lenses containing nPVP (non-ionic)
 - more bounded water molecules
 - loses ability to hydrate ions thus limited amount of hydration energy: thus limited water loss

Pusch and Walch, Science 1982 10:325-60: independent of $[\text{H}_2\text{O}]$, varies with temperature
Collagen

- High tensile strength
- May be antigenic unless very pure
- Used in other body sites
 - sutures
 - dressings
 - tendons
 - vessels
 - scleral buckles
Collagen

- Porcine scleral tissue
- 63% water
- Dissolvable
 - 6 hrs - 72 hrs
- Bandage lenses
 - corneal trauma
 - keratoplasty
 - drug delivery
 - now superseded by SiH lenses
Hybrid

- **Synergize®**
 - initially Saturn / Saturn II
 - SoftPerm (Synergicon A)
- **Rigid centre**
 - Previous: low Dk siloxane-styrene (14 x 10^{-11})
 - Now: high Dk (100 x 10^{-11})
- **Soft skirt**
 - 25% EWC HEMA-based (5 x 10^{-11})
- **Distorted corneas**
 - post-Rk; post graft; post trauma; keratoconus
 - good vision; good comfort
 - physiological problems
 - very little movement
Proclear (Omafilcon A)

- Based on HEMA + phosphorylcholine (PC)
- Synthetic analogue of a natural phospholipid
- EWC = 60%
- Mimics cell surfaces
 - biocompatibility ?
 - low dehydration ?
 - low deposition ?

Young et al, Optician 1996
Silicone-Hydrogels

- Silicone-containing hydrogels
 - surface treated
- Low water content
- High Dk
- Released 1999
 - CIBA-Vision and B&L
- Monthly continuous wear (CW), biweekly extended wear (EW)
- Advantages
 - reduced hyperaemia
 - minimal oedema
 - no myopic shift
Dehydration

- All SCL materials dehydrate on eye
 - initial loss rapid then slows

Clinically relevant
- fit
- comfort
- Dk
- staining

Zadnik & Mutti; ICLC 1985
Collins et al; CEO 1989
Little & Bruce; OVS 1994
Dehydration:
Relevant Factors

- Polymer characteristics
 - water content
 - ionicity

- Thickness
 - design
 - BVP

- Subject
 - tear film
 - occupation

- Environment
 - air temperature
 - humidity
 - wind velocity

Andrasko - various
Brennan & Efron - various
Increased Dehydration:

Rules of Thumb

- **Environment**
 - low humidity (<25%)
 - high temperatures
 - windy conditions

- **Lens**
 - thin lens designs
 - low prescriptions
 - high water content materials
 - ionic materials

- **Subject**
 - poor blinking
Contact Lens Deposits

Module 5 (IACLE)
Prepared by: L. Jones PhD FCOptom DipCLP DipOrth FAAO (DipCL) FIACLE & L. Sorbara OD MSc FAAO (Dip C&CL)

Presented by: M. Steenbakkers OD FAAO
Lens Deposits and Coatings

- primary reason for lens replacement
- aggravated by non-compliance
- must identify onset of the problem (time)
- must direct cleaning towards type and extent of deposit
- source of food for bacteria
 - adhered to lens/coating surface
Lens Deposits and Coatings

- **Sources:**
 - tears, handling, cosmetics, care regime, environment

- **Patient Factors:**
 - ocular temp., osmotic gradient, pH, altered tear chemistry, poor blinking (infrequent)

- **Surface Chemistry:**
 - ionicity, wettability, smoothness of surface, elasticity
Lens Deposits and Coatings

- Dependent on (SCL):
 - lens material
 - methacrylate (MA)=protein
 - n-vinyl pyrrolidone (NVP)=lipid
 - water content (dehydration rate)
 - ionicity (charge of surface)
 - age of the lens (disposable, planned replacement, conventional.)
 - tear film (dry eye)
 - wearing schedule (overnight wear)
 - care system (enzyme use)
Dependent on (GP):

- lens material
 - *silicone acrylate* (SA) = protein
 - *fluoro*-silicone acrylate (FluoroSA) = lipid
- ionicity (charge of surface)
- age of the lens
- tear film (dry eye)
- wearing schedule (overnight wear)
- care system (enzyme use)
Lens Discolouration

- Caused by: (SCL)
 - preservatives: chlorhexidine and thimerosal
 - topping up
 - eye drops
 - make up
 - organic and inorganic substances
 - smoke, nicotine
 - increased adrenaline secretion
Lens Discolouration

- yellow-brown.......chlorhexidine
- yellow-orange.......sorbic acid
- yellow-green.......fluorescein
- orange-red.........ferric oxide
- pinkish...............epinephrine, vasoconstrictors
- grey....................mercurial
- black....................eye makeup, mercury
- milky white..........Ca\(^+\)phosphate
Types of Deposits

- Organic

- Inorganic
 - Ca\(^+\) Carbonate or Ca\(^+\) Phosphate
 - Mercury
 - Lipid and Calcium Combo
Types of Deposits

- **Organic Deposits (GP & SCL)**
 - *protein* from tears
 - lysozyme (+ve charge) or albumin
 - thin colourless film
 - when **denatured**, white film
 - non-reversible change to protein structure due to heat, pH change and chem. reagents
 - forms in layers and cracks
 - *lipids* from Zeiss or Moll glands
 - greasy film or spots (GP-pearlescence)
Types of Deposits

- **Organic Deposits (SCL)***
 - *pigments*
 - yellow to brownish
 - from various contaminants
 - protein binds to chlorhexidine causing pink/yellow deposit
 - see lens discolouration
Types of Deposits

- **Organic Deposits (SCL)**
 - *microorganisms*
 - fungi or yeast eg, Candida, Aspergillus
 - in discrete patches
 - dark brown or black, white mycelia and feathery hyphae
 - bacteria (eg. Strep) also adhere to GP (small amount) and pseudomonas to SCL (especially group IV)
 - white to brown star shaped
 - related to non-preserved solutions, infrequent replacement of storage solution
Fungi

- Fungi use contaminants on lens surface
 - *Aspergillus*
 - *Candida*
- Coloured
- Filamentary
- Inadequate disinfection
- Replace lens
Protein

- Most common
- Clinically - thin, translucent appearance
- Visible versus denatured
- Deposition is complex issue
 - protein type
 - size
 - charge
 - material type
 - water content
 - charge
Protein Size & Charge

<table>
<thead>
<tr>
<th></th>
<th>Molecular Weight (kD)</th>
<th>Relative Charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lysozyme</td>
<td>14.6</td>
<td>+ve (+++)</td>
</tr>
<tr>
<td>Lactoferrin</td>
<td>60 - 80</td>
<td>+ve (+)</td>
</tr>
<tr>
<td>Albumin</td>
<td>65</td>
<td>-ve (-)</td>
</tr>
</tbody>
</table>
Deposited Protein Types

<table>
<thead>
<tr>
<th></th>
<th>GII</th>
<th>GIV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lysozyme</td>
<td>33%</td>
<td>90%</td>
</tr>
<tr>
<td>Albumin</td>
<td>33%</td>
<td>5%</td>
</tr>
<tr>
<td>Lactoferrin</td>
<td>33%</td>
<td>5%</td>
</tr>
</tbody>
</table>

Sariri, 1995
Protein Appearance
Protein Film (GP)
Surface Plaque (GP)
Tx: Protein

- Must be removed or lens replaced
 - reduces acuity
 - promotes inflammatory response

- Techniques
 - surfactant cleaning
 - 50-60% removal
 - enzyme removers
 - 50-60% removal
Lipid

- Greasy, shiny appearance
- Many types
- Patient dependent
- Usually combine with other tear film components
- Derived from
 - meibomian glands
 - extraneous sources
- Particular problem with
 - GP’s with Fluorine
 - NVP-containing Group II SCL
Lipid Appearance (SCL)
Lipid Deposition on GP’s

- Lipid attached to lens surface
- If lenses *new* then due to failure to remove polish from lens surface during manufacture
- If *old* then due to poor maintenance
- Often worse in patients with MGD
- Use alcohol-containing surfactants
 - occasionally AM & PM cleaning required
Tx: Lipid

- Must be removed
 - interferes with acuity
 - reduces wettability

- Remove with surfactants
 - Surfactants containing isopropyl alcohol are most effective
 - Eg. Miraflow or Aoflow (CibaVision)
Mucin

- Produced by goblet cells of conjunctiva
- Mainly complex carbohydrates
- Usually base layer for other deposits
- Occasionally a problem with GP’s
 - Part of the GP “plaque”
GP Plaque
Types of Deposits

- Inorganic Deposits (SCL)
 - deposition of salts within lens matrix
 - calcium (white), iron (red), mercury (from thimerosal, complex of protein + sulphide, black discolour), magnesium and silica
 - Ca^+ phosphate (white sheet, related to buffer in solution)
 - common with aphakics and pathological corneae, non-ionic, NVP
 - from non-softened water and external sources
Types of Deposits

- Lipid and Ca\(^+\) Carbonate combo (SCL)
 - white crystalline deposit
 - into lens surface
 - called a "lens calculi"
 - related to calcium in tears
 - covered by lipid spot on the surface
 - called a "jelly bump"
Calculi = Lipid + Ca$^+$ Carbonate

- Discrete, elevated deposits
- Anterior surface of SCL only
- Round or oval
- Grow beneath lens surface

Synonyms
- jelly bumps
- calcium spots
- white spots
- mulberry spots
Gross Calculi Appearance
Calculi-Jelly Bumps

- 90% lipid
- 10% calcium, mucin and protein mixture
- Majority on NVP-containing Group II lenses
- Inter patient differences
 - particularly in dry-eyed subjects
- Removal leaves pit
- Replacement necessary
Calcium

- Derived from tears and/or buffer agents
- Calcium
 - carbonate (white crystals or film)
 - phosphate (white film)
- Remove with chelating agents (EDTA)
Calcium
Iron

- Metallic FB become embedded
- Oxidize to form “rust-spot”
- Building sites common problem
- Replacement necessary
Iron Deposits
Management of Deposits

- Organic:
 - protein
 - enzyme specific for protein
 - lipid
 - surfactant specific to lipid
 - pigment
 - throw out lens
 - microorganisms
 - throw out the lens
Management of Deposits

- Inorganic:
 - rust
 - throw out lens
 - Ca\(^+\) (calculi, jelly bumps)
 - throw out lens
 - mercury
 - throw out lens
Management

Keep lens clean

- Maximise cleaning regime
 - surfactants
 - enzyme cleaners
- Change material
 - from HWC to LWC
 - from ionic to non-ionic
 - from NVP to non-NVP
 - use deposit resistant material

Frequent Replacement !!!
1 - 28 day Replacement Of Group II & Group IV Materials

Clinical Trial

- Group II lens (Soflens 66) vs Group IV lens (Acuvue)
- Replaced every 1, 7, 14, 21 or 28 days
- Randomised, cross-over
- n = 22
Total Protein

Days Of Wear

1 7 14 21 28

g of Protein

Group IV

Group II

Days Of Wear

g of Protein

Group IV

Group II
Conclusions

- **Significant differences exist between and within FDA groups**
 - **Protein related to**
 - methacrylate (MA) concentration & EWC (greater in Group IV)
 - **Lipid related to**
 - n-vinyl pyrrolidone (NVP) concentration & EWC (greater in Group II)
Conclusions

- Lipid and protein deposition follow different kinetics
 - **Protein**
 - *almost immediately in Group IV, then plateaus*
 - *slowly accumulates in Group II, no plateau*
 - **Lipid**
 - *inconsequential in non-NVP Group IV*
 - *slowly, progressively accumulates in Group II, no plateau*
Deposition on SiH

Lysozyme and Lipid Deposition on Silicone Hydrogel Contact Lens Materials

Lyndon Jones, Ph.D., F.C.Optom., Michelle Senchyna, Ph.D., Mary-Ann Glasier, M.S., Jillian Schickler, B.S., Ian Forbes, B.S., Derek Louie, M.S., and Christopher May, B.S.

Jones et al, 2003
Lipid Deposition

○ a problem for certain individuals...
SiH Deposition Summary

- Reduced wettability
- Little protein
- Lots of lipid
- Removal of lipid critical
 - current care systems optimised for protein removal
 - rub vs no-rub?
 - additional cleaner?
 - Miraflow ideal